

Part A. PERSONAL INFORMATION		CV date		13/01/2021
First and Family name	Mattia Bramini			
Social Security, Passport, ID number		Age	36	
Researcher codes	WoS Researcher ID (*)	Q-613	30-2016	
	SCOPUS Author ID(*)	45760	45760963100	
	Open Researcher and Contributor ID (ORCID) **	0000-	0000-0002-0381-9391	

(*) At least one of these is mandatory

(**) Mandatory

A.1. Current position

Name of University/Institution	University of Granada			
Department	Cell Biology			
Address and Country	C/Fuentenueva s/n, 18071, Granada			
Phone number	E-mail	mbramini@ugr.es		
Current position	Ramon y Cajal Researcher	From	01/05/2021	
Key words	Nanomedicine, Neuroscience, Biomaterials, Cell Biology			

A.2. Education

Bachelor/Master/PhD	University	Year	
Phd in Bionanointeractions	University College Dublin, School of		
	Chemistry and Chemical Biology	2014	
Master Degree in Medical and	Università degli Studi di Modena e Reggio	2009	
Pharmaceutical Biotechnology	Emilia		
Bachelor Degree in	Università degli Studi di Modena e Reggio	2007	
Biotechnology	Emilia	2007	

A.3. General quality indicators of scientific production:

<u>**30** publications</u> in peer-reviewed journals, including 2 Nature Nanotechnology (*IF*: 33.4), 2 ACS Nano (1^{st} author, *IF*: 13.9), 1 Nano Letters (1^{st} and corresponding author, *IF*: 12.3), 1 Small (1^{st} and corresponding author, *IF*: 10.9)

<u>Total time cited > 1000;</u> <u>h-index: 17</u>; i10-index: 19

Total IF: 250.22, IF per document on journals: 8.27

2 book chapters

<u>Oral Contributions:</u> (i) 6 invited seminars; (ii) 4 invited talks at international conferences; (iii) 7 selected talks after peer-review at international conferences

Part B. CV SUMMARY

I got a PhD in Bionano-interactions (2014) from the Centre for BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin (Ireland). In my PhD, I have been focused in understanding the behavior of nanoparticles in biological conditions (in particular the translocation through a human *in vitro* model of blood-brain barrier), by applying advanced light and fluorescence microscopy, cellular and molecular biology approaches. In April 2014 I joined the Italian Institute of Technology (IIT), Center for Synaptic Neuroscience and Technology, as a post-doc within the European Graphene Flaghship project. I also gave a yearly PhD-course of 2 CFU titled: "Neuronal-nanotechnology: a systematic review of the bionano interactions in the central nervous system". Scientifically, I have been the link between the neuroscience group and material scientist in IIT, leading to new collaborations and grant proposal writing. In November 2019 I joined the University of Granada, Faculty of Science (Department of Applied Physics) as a Marie Curie-MSCA COFUND Athenea3i Fellow, working on the development of new nanomedicine techniques for neuronal regeneration. As teaching activities, I gave 2 credits of Physics I (Theory) for the Degree of Chemical Engineer, 2 credits of Biophysics and 2.5credits of Thermodynamics (Practical Labs for the Degree in Physics). I

have tutored 1 TFM and 2 TFGs. Starting May 1st, 2021, I am a Ramon y Cajal Researcher at the Department of Cell Biology (UGR) leading a new research line on nanomaterials applications for neurobiology.

Part C. RELEVANT MERITS

C.1. Publications (including books)

<u>1. Scientific paper.</u> Matteo Moschetta; et al; (11/12). 2021. Hydrogenated Graphene Improves Neuronal Network Maturation and Excitatory Transmission. Advanced Biology. Wiley-VCH GmbH.

<u>2. Scientific paper.</u> Nara Liessi; et al. (4/6). 2021. Isobaric Labeling Proteomics Allows a High-Throughput Investigation of Protein Corona Orientation. Analytical Chemistry. ACS Publicatons. 93-2, pp.784-791.

<u>3. Scientific paper.</u> Andrea Capasso; et al. (11/13). 2020. Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity. Advanced Functional Materials. Wiley-VCH GmbH.

<u>4. Scientific paper.</u> Jose Fernando Maya Vetencourt; et al. (5/25). 2020. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nature Nanotechnology. Springer Nature. 8, pp.698-708.

<u>5. Scientific paper.</u> Giuseppe Maria Paternò; et al; (8/14). 2020. Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene. Advanced Science. Wiley - VCH. 7-8.

<u>6. Review paper.</u> Raluca-Elena Munteanu; et al. (3/4). 2020. 2D materials in electrochemical sensors for in vitro or in vivo use. Analytical and Bioanalytical Chemistry. Springer. 413-3, pp.701-725.

7. Scientific paper. Fabio Candotto Carniel; et al. (13/7). 2020. Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. Journal of Hazardous Materials. Elsevier. 393.

<u>8. Scientific paper.</u> Miriam Marquitan; et al. (6/3). 2020. Polymer/enzyme-modified HF-etched carbon nanoelectrodes for single-cell analysis. Bioelectrochemistry. Elsevier. 133.

<u>9. Scientific paper.</u> Mattia Lorenzo DiFrancesco; et al. (23/5). 2020. Neuronal firing modulation by a membrane-targeted photoswitch. Nature Nanotechnology. Springer Nature.

<u>10. Scientific paper.</u> Elisa Banchi; et al. (12/5). 2019. Graphene-based materials do not impair physiology, gene expression and growth dynamics of the aeroterrestrial microalga Trebouxia gelatinosa. Nanotoxicology. Taylor & Francis. 13-4, pp.492-509.

<u>11. Scientific paper.</u> Mattia Bramini; et al. (11/1). 2019. An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small. Wiley-VCH. 13-4, pp.492-509.

<u>12. Scientific paper.</u> Gambardella, Chiara; et al. 2018. Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. Marine environmental research. 141, pp.313-321.

<u>13. Scientific paper.</u> Chiacchiaretta, Martina; et al. (10/2). 2018. Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Letters. 18-9, pp.5827-5838. ISSN 1530-6992.

14. Review paper. Bramini, Mattia; et al. (9/1). 2018. Interfacing Graphene-Based Materials With Neural Cells. Frontiers in Systems Neuroscience. 12-12, pp.1-22. ISSN 1662-5137.

<u>15. Scientific paper.</u> Piccini, Alessandra; et al. (18/7). 2017. APache Is an AP2-Interacting Protein Involved in Synaptic Vesicle Trafficking and Neuronal Development. Cell Reports. 12-12, pp.3596-3611. ISSN 2211-1247.

<u>16. Scientific paper.</u> Gambardella, Chiara; et al. 2017. Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicology and Environmental Safety. 145, pp.250-257.

<u>17. Scientific paper.</u> Ye, Dong; et al. (7/2). 2017. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers. Beilstein Journal of Nanotechnology. 8, pp.1396-1406.

<u>18. Scientific paper.</u> Chiacchiaretta, Martina; et al. (7/3). 2017. Neuronal hyperactivity causes Na+/H+ exchanger-induced extracellular acidification at active synapses. Journal of Cell Science. 130, pp.1435-1449. ISSN 1477-9137.

<u>19. Scientific paper.</u> Antognazza, Maria Rosa; et al. (19/19) 2016. Characterization of a Polymer-Based, Fully Organic Prosthesis for Implantation into the Subretinal Space of the Rat. Advanced Healthcare Materials. 5-17, pp.2271-2282.

<u>20. Scientific paper.</u> Bramini, Mattia; et al. (9/1). 2016. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 10-7, pp.7154-7171. ISSN 1936-0851.

<u>21. Scientific paper.</u> Gambardella, Chiara; et al. (10/7). 2015. Exposure of Paracentrotus lividus male gametes to engineered nanoparticles affects skeletal bio-mineralization processes and larval plasticity. Aquatic Toxicology. 158, pp.181-191.

<u>22. Scientific paper.</u> Gambardella, Chiara; et al. (8/5). 2015. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development. Chemosphere. 139, pp.486-495.

23. Scientific paper. Zarschler, Kristof; et al. (8/5). 2014. Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies. Nanoscale. 6-11, pp.6046-6056.

24. Scientific paper. Bramini, Mattia; et al. (7/1). 2014. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano. 8-8, pp.4304-4312.

<u>25. Scientific paper.</u> Nic Raghnaill, Michelle; et al. (10/2). 2014. Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles. The Analyst. 139, pp.923-930.

<u>26. Scientific paper.</u> Ye, Dong; et al. (7/3). 2013. Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale. 13, pp.11153-11165.

<u>27. Scientific paper.</u> Sterrenburg, Linda; et al. (10/5). 2011. Chronic stress induces sexspecific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PloS One. 6-11, pp. e28128.

<u>28. Scientific paper.</u> Nic Ragnaill, Michelle; et al. (7/4). 2011. Internal benchmarking of a human blood-brain barrier cell model for screening of nanoparticle uptake and transcytosis. European Journal of Pharmaceutics and Biopharmaceutics. 77-3, pp.360-367.

<u>29. Scientific paper.</u> Sterrenburg, Linda; et al. (8/5). 2011. Sex-dependent and differential responses to acute restraint stress of corticotropin-releasing factor-producing neurons in the rat paraventricular nucleus, central amygdala, and bed nucleus of the stria terminalis. Journal of Neuroscience Research. 90-1, pp.179-192.

<u>30. Book chapter.</u> Mattia Bramini; et al. 2019. Neuronal Cultures and Nanomaterials In vitro neuronal networks. From culturing methods to neuro-technological applications. Springer. 22. <u>31. Book chapter.</u> Bramini, Mattia; et al. 2018. Interactions Between 2D Graphene-Based Materials and the Nervous tissue. 2D Materials: Characterization, Production and Applications. Taylor & Francis pp.62-86.

<u>32. Scientific-technical report.</u> Michelle Nic Raghnaill; et al. (6/4). 2011. Nanotechnology: Environmental and Human Health Impacts Science, Technology, Research & Innovation for the Environment - STRIVE. Environmental Protection Agency (EPA). 79.

C.2. Grants

1. PROGRAMA DE AYUDAS RAMÓN Y CAJAL, 01/05/2021, MINISTERIO DE CIENCIA E INNOVACIÓN; AGENCIA ESTATAL DE INVESTIGACIÓN (RYC2019-027692-I/

AEI/10.13039/501100011033) y el FONDO SOCIAL EUROPEO. 01/05/2021-30/04/2026 **<u>2. MAG-NEUROREG</u>**: Magnetic ferrofluid nanosystems as innovative neuro-interfaces to foster regeneration and restore network connectivity in neurodegenerative disorders (Universidad de Granada). 01/11/2019-30/04/2021.

3. Governing neuronal signalling: graphene-based interfaces to foster neuronal regeneration and restore network excitability in neurodegenerative disorders. PI: Fabio Benfenati. (Istituto Italiano di Tecnologia). 01/01/2019-31/12/2021.

<u>4. EPITOPEMAP</u> Mapping the detailed composition of surface adsorbed protein layers on biomaterials and nanoparticles - an alternative approach to biocompatibility and nanotoxicity. European Science Foundation (ESF). PI: Kenneth Dawson. (University College Dublin). 01/01/2010-31/05/2010.

C.3. Contracts

 <u>Ramon y Cajal</u>, AGENCIA ESTATAL DE INVESTIGACIÓN (RYC2019-027692-I/ AEI/10.13039/501100011033) y el FONDO SOCIAL EUROPEO. 01/05/2021-30/04/2026
<u>MSCA COFUND Athenea3i Fellow</u>, n. 754446 Marie Sklodowska-Curie grant and UGR Research and knowledge Transfer Found (Universidad de Granada). 01/11/2019-30/09/2022.

<u>3. Post-Doc: Graphene-Flagship (CORE2) European project</u>, n. 696656 European Union (H2020). 01/04/2018-31/10/2019. *Italian Institute of Technology, Genova, Italy*

<u>4. Post-Doc: Graphene-Flagship (CORE1) European project</u>, n. 696656 European Union (H2020). 01/04/2016-01/04/2018. *Italian Institute of Technology, Genova, Italy*

<u>5. Post-Doc Graphene-Flagship European project</u>, EPUE008301 European Union (H2020). 01/04/2014-P2Y. *Italian Institute of Technology, Genova, Italy*

<u>6. PhD student: NanoTransKinetics project</u> (EC-FP7), n. NMP4-2010-266737 European Union - FP7 programme. 01/02/2012-P2Y. *University College Dublin*

<u>7. PhD student: NeuroNano Small Collaborative Project</u> - NNP4-SL-2008-214547 European Union - FP7 programme. 01/05/2010-P1Y7M. *University College Dublin*

C.4. Awards

1. 9th Nanotox 2018 outstanding oral contribution (Neuss, Germany, 2018)

<u>2. Best oral presentation</u> at the Dublin Chemistry Graduate Programme (Dublin, Ireland, 2013)

3. Best oral presentation at the Irish Cytometry Society meeting (Galway, Ireland, 2012)

4. European Materials Research Society Young Scientist Award in recognition of the outstanding oral contribution, E-Mrs Spring Meeting (Nice, France, 2011)

C.5. Editorial Assignments

<u>Editorial Board Member:</u> The Graphene Technology journal (Springer Nature); Biology (MDPI)

<u>Reviewer for:</u> ACS Nano, ACS Omega; 2D Materials, Biomedical Physics & Engineering Express; Nanoscale, RCS Advances; Carbon, Chemosphere, Synthetic Metals; Nanomedicine, Communication Biology, Advanced Biology

C.6. Dissemination activities

<u>1. Pint of Science – Italy,</u> "Dalla Matita al Premio Nobel: La Favola del Grafene", Genova, italy, 2016 (<u>https://www.mentelocale.it/genova/articoli/69418-genova-pint-of-science-genova-2016-birra-scienza-al-pub.htm</u>)

<u>2. Cineforum: Fra Cinema e Scienza,</u> "C'è tanta scienza in fondo", seminar introduction to the movie "Trascendence", Cinema Sivori, Genova, Italy, 2015

<u>3. Huffington Post Science Blog – Italy</u>, 8 blogs published between 2015 and 2016 in the Huffington Post Italy (<u>https://www.huffingtonpost.it/author/mattia-bramini/</u>)

<u>4. FameLab Italy</u>, "Nanotecnologie per applicazioni biomediche", 3rd at the regional FameLab contest, 2015, Genova, Italy (<u>https://www.youtube.com/watch?v=BxpRy7BE8yA</u>)

C.7. Student Tutoring

<u>1. PhD (Doctoral) Thesis:</u> Impact of graphene nanosheets on primary astrocytes; Università degli studi di Genova. Student: Martina Chiacchiaretta, 28/02/**2018**

2. <u>Master Thesis:</u> (i) Magnetic ferrofluid nanosystems as innovative neuro-interfaces to foster regeneration and restore network connectivity in neurodegenerative disorders; UGR. Student: Paula Maria Garcia Franco, 14/07/2020 (ii) Biointeraction of graphene-related nanomaterials with an in vitro blood-brain barrier model; Università degli Studi di Genova. Student: Alice Podestà, 20/02/2019; (iii) Bio-interazione di nanomateriali di grafene ed ossido di grafene con astrociti primari; Università degli Studi di Genova. Student: Emanuele Giordano, 30/03/2016

<u>3. Bachelor Thesis:</u> Antioxidant effects of platinum nanoparticles on primary rat cortical neurons; Università degli studi di Genova. Student: Giulia Borgonovo, 27/07/**2018**